The invention relates to pixel circuit and an operating method thereof, comprising a front-end circuit comprising a single photodiode and having an output, said front-end circuit being configured for delivering an output signal derived from a light exposure of said single photodiode; a transient detector circuit configured for detecting a change in said photoreceptor signal delivered on said output; an exposure measurement circuit configured for measuring said photoreceptor signal delivered on said output upon detection by the transient detector circuit of a change in the photoreceptor signal. The invention also relates to an image sensor comprising a plurality of pixel circuits.

8 Claims, 6 Drawing Sheets
US 9,967,479 B2
Page 2

(51) Int. Cl.
H04N 5/335 (2011.01)
H04N 5/235 (2006.01)
H04N 5/378 (2011.01)
H04N 3/14 (2006.01)
H01L 27/146 (2006.01)

(52) U.S. Cl.
CPC H04N 5/335 (2013.01); H04N 5/378 (2013.01); H04N 5/3745 (2013.01); H01L 27/14609 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS
* cited by examiner
FIG 1

[Diagram of circuit components labeled as follows:]

1. Photoreceptor circuit
2. Gain stage
3. Transient detector circuit
4. Exposure measurement circuit
5. Front-end circuit

FIG 2

[Diagram of circuit components labeled as follows:]

1. Amplifier A1
2. Comparator
3. Logic
4. Feedback path labeled as Vreq,rel+
5. Feedback path labeled as Vreq,rel-
6. Feedback path labeled as Vack,rel
7. Feedback path labeled as Vres,abs
FIG 10

Pixel circuit

Photoreceptor circuit

Gain stage

Transient detector circuit

Sample & Hold

Front-end circuit

ADC

1_{ph}

PD
DYNAMIC, SINGLE PHOTodiode PIXEL CIRCUIT AND OPERATING METHOD THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

CONTEXT AND BACKGROUND OF THE INVENTION

The invention relates to a pixel circuit for an image sensor. More specifically, it relates to a pixel circuit and an operating method thereof, wherein an exposure measurement circuit is configured for measuring the light exposure intensity from a photoreceptor signal derived from a light exposure of a single photoreceptor, upon detection by a transient detector circuit of a change in said photoreceptor signal.

Conventional image sensors acquire the visual information time-quantized at a predetermined frame rate. Each frame carries the information from all pixels, regardless of whether or not this information has changed since the last frame has been acquired. This approach obviously results, depending on the dynamic contents of the scene, in a more or less high degree of redundancy in the recorded image data. The problem worsens as modern image sensors advance to ever higher spatial and temporal resolution. The hardware required for post-processing of the data increases in complexity and cost, demand on transmission bandwidth and data storage capacity surges and the power consumption rises, leading to severe limitations in all kinds of vision applications, from demanding high-speed industrial vision systems to mobile, battery-powered consumer devices.

One approach to dealing with temporal redundancy in video data is frame difference encoding. This simplest form of video compression includes transmitting only pixel values that exceed a defined intensity change threshold from frame to frame after an initial key-frame. Known frame differencing imagers rely on acquisition and processing of full frames of image data and are not able to self-consistently suppress temporal redundancy and provide real-time compressed video output. Furthermore, even when the processing and difference quantization is done at the pixel-level, the temporal resolution of the acquisition of the scene dynamics, as in all frame-based imaging devices, is still limited to the achievable frame rate and is time-quantized to this frame rate.

The adverse effects of data redundancy are most effectively avoided by not recording the redundant data in the first place and directly reducing data volume at the sensor output level. The immediate benefits are reductions in bandwidth, memory and computing power requirements for data transmission and post-processing, hence decreasing system power, complexity and cost. In addition, the frame-based, clocked principle of operation of conventional CMOS or CCD image sensors leads to limitations in temporal resolution as scene dynamics are quantized to the frame rate at which the pixel field of view is read out, and poor dynamic range.

The problem to be solved by the present invention is to provide a method and an apparatus for the continuous acquisition of the full visual information of an observed dynamic scene with high temporal and intensity resolution, over a wide dynamic range (of recordable and processible light intensity) and thereby generating the minimum necessary amount of data volume. Thus, the generated data are not constituted by a succession of frames containing the image information of all pixels, but an (asynchronous) stream of change and intensity (i.e. grey level) information of individual pixels, which are recorded and transmitted only if an actual change in light intensity in the field of view of the individual pixel has been detected by the pixel itself.

This method leads to a substantial reduction of generated data through complete suppression of the temporal redundancy in the picture information that is typical for conventional image sensors, thought maintained the same, or even higher, information content. The picture element for an image sensor that implements the aforementioned method as well as the required asynchronous data readout mechanism can be realized on basis of analogue electronic circuits. An image sensor with a multiplicity of such picture elements is typically realized and fabricated as an integrated system-on-chip e.g. in CMOS technology.

Implementing such a sensor and thus avoiding the above mentioned drawbacks of conventional image data acquisition would be beneficial for a wide range of artificial vision applications including industrial high-speed vision (e.g. fast object recognition, motion detection and analysis, object tracking, etc.), automotive (e.g. real-time 3D stereo vision for collision warning and avoidance, intelligent rear-view mirrors, etc.), surveillance and security (scene surveillance) or robotics (autonomous navigation, SLAM) as well as biomedical and scientific imaging applications. As the sensor operation is inspired by working principles of the human retina, one advantageous example application is the treatment of a degenerated retina of a blind patient with an implantable prosthesis device based on the data delivered by such a sensor.

A solution for achieving the aforementioned complete temporal redundancy suppression is based on pixel-individual pre-processing and acquiring of the image information, event-controlled (i.e. independently of external timing control such as clock, shutter or reset signals) and conditionally (i.e. only when changes in the scene have been detected). As explained below, the control of the image data acquisition is transferred to the pixel-level and can be done at very high temporal resolution (e.g. fully asynchronously).

In the case of the optical transient sensor, or dynamic vision sensor (DVS), changes in lighting intensity received by the individual, autonomously operating pixels are detected by an electronic circuit, "a transient detector", described in U.S. Pat. No. 7,728,269.

U.S. patent application US 2010/0182468 A1 discloses combining transient detector circuits, i.e. light exposure intensity changes detector circuits, and conditional exposure measurement circuits. A transient detector circuit individually and asynchronously initiates the measurement of a new exposure measure only if—and immediately after—a brightness change of a certain magnitude has been detected in the field-of-view of a pixel. Such a pixel does not rely on external timing signals and independently requests access to an (asynchronous and arbitrated) output channel only when it has a new grayscale value to communicate. Consequently, a pixel that is not stimulated visually does not produce
output. In addition, the asynchronous operation avoids the time quantization of frame-based acquisition and scanning readout.

For each pixel, the transient detector circuit monitors a photoreceptor voltage derived from a first photodiode for detecting relative voltage changes that exceed a threshold. Upon such detection, the transient detector circuit outputs a command for the exposure measurement circuit of the same pixel to start an absolute intensity measurement, i.e., an absolute grey level measurement. The exposure measurement circuit uses a second photodiode of the pixel, placed adjacent to the first photodiode, and derives its measure from the time duration for discharging the photodiode junction capacitance with the instantaneous photocurrent.

However, the pixel circuit disclosed in US 2010/0182468 A1 is not optimal since it consumes a large area for a pixel element and thus cannot achieve high resolution. Furthermore, time-based exposure measurement through direct photocurrent integration often leads to a prohibitively long measurement time of a new exposure value, especially at low pixel illuminance levels, due to the corresponding small photocurrents. Finally, using two separate photodiodes for change detection and exposure measurement leads to spatial divergence and motion direction dependency of the image data acquisition process, resulting in a reduction in imaging quality.

SUMMARY OF THE INVENTION

The invention aims at providing a pixel circuit with smaller area requirements, allowing for larger array sizes or smaller sensor chip dimensions. The invention also aims at speeding up the individual measurement processes and consequently increasing temporal resolution. Furthermore, the invention aims at avoiding spatial divergence between change detection and exposure measurement caused by the use of two separate photodiodes, improving measurement accuracy and consequently image quality.

In this respect, the invention relates to a pixel circuit comprising:

- a front-end circuit comprising a single photodiode and having an output, said front-end circuit being configured for delivering on said output a photoreceptor signal derived from a light exposure of said single photodiode;
- a transient detector circuit configured for detecting a change in said photoreceptor signal delivered on said output;
- an exposure measurement circuit configured for measuring said photoreceptor signal delivered on said output upon detection by the transient detector circuit of a change in the photoreceptor signal.

In contrast to the prior art circuits wherein exposure changes were detected on a photodiode and exposure measurements were made on another photodiode, the proposed pixel circuit requires only one photodiode per pixel. Accordingly, the surface consumption of the pixel element can be reduced significantly, allowing for larger array sizes or smaller sensor chip dimensions. Resolution can also be increased. Also, the spatial divergence between change detection and exposure measurement is avoided, improving measurement accuracy and consequently image quality. Very advantageously, the duration of a grey level measurement can be significantly reduced as explained below, significantly improving the temporal resolution of the image data acquisition process.

Other preferred, although not non-limitative, aspects of the pixel circuit are as follows, isolated or in a technically feasible combination:

- the exposure measurement circuit comprises an input connected to the output of the front-end circuit for receiving the photoreceptor signal, a capacitor connected by a first switch to said input, said first switch being configured for disconnecting said capacitor from said input, a source current in series with a second switch, parallel to said capacitor, said second switch being configured for controlling a discharge of said capacitor, the exposure measurement circuit comprises a voltage comparator having a signal input connected to one of the terminal of the capacitor and a reference input connected to a reference voltage, the voltage comparator has: a signal input connected to one of the terminal of the capacitor and a reference input connected to reference switch configured for selectively connecting said reference input to at least two reference voltages; the transient detector circuit comprises an amplifier having two single-ended inverting common-source stages with capacitive feedback separated by a follower buffer wherein a first capacitor is charged by means of the photoreceptor signal, and at least one threshold detector is arranged to detect if a voltage over another capacitor exceeds a threshold value; the front-end circuit comprises a photoreceptor circuit connected to the single diode, the photoreceptor circuit comprises: an output for delivering the photoreceptor signal derived from the light exposure of said single photodiode, a first photoreceptor transistor having a drain and a gate, the gate of said first photoreceptor transistor being connected to said output, an additional photoreceptor transistor having a drain, a source and a gate, the source of said additional photoreceptor transistor being connected to said single photodiode and, wherein said first and additional photoreceptor transistors have a common source; the gate of additional photoreceptor transistor is biased by a biasing voltage or is connected to the common source of the first and additional photoreceptor transistors; the front-end circuit further comprises a gain stage for amplifying the photoreceptor signal delivered on the output of the front-end circuit, said gain stage comprising: an input connected to the output of a photoreceptor circuit, an output, a first gain transistor having a drain, a source and a gate, the gate of the first gain transistor being connected to the input of the gain stage, the source of the first gain transistor being connected to a biasing voltage and the drain of said first gain transistor being connected to the output of said gain stage, and a plurality of gain transistors in series, each gain transistor of the series having a drain, a source and a gate, each gain transistor of the series having its drain connected to its gate, and one of said plurality of gain transistors in series having its drain connected to the drain of the first gain transistor.
The invention also relates to an image sensor comprising a plurality of pixel circuits according to a possible embodiment of the invention.

The invention also relates to a method for operating a pixel circuit according to one of the possible embodiments of the invention, wherein a light exposure measurement cycle of a photodiode by means of the exposure measurement circuit is initiated by detection by the transient detector circuit of a change in the photoreceptor signal derived from the intensity of the incident light at said photodiode.

Other preferred, although non-limitative, aspects of the pixel circuit are as follows, isolated or in a technically feasible combination:

a light exposure measurement cycle of a photodiode by means of the exposure measurement circuit can also be initiated through an externally applied control signal independent from any detection in the photoreceptor signal derived from the intensity of the incident light at said photodiode;

the light exposure of the photodiode is measured by determining the time for the voltage across a discharging capacitor of the exposure measurement circuit to reach at least one reference voltage;

there is a first reference voltage and a second reference voltage, said first reference voltage being higher than said second reference voltage, and wherein the light exposure of the photodiode is determined by comparing:

a first duration corresponding to the time for the voltage across a discharging capacitor of the exposure measurement circuit to reach said first reference voltage, and

a second duration corresponding to the time for the voltage across said discharging capacitor of the exposure measurement circuit to reach said second reference voltage;

before the exposure measurement cycle, the capacitor of the exposure measurement circuit is charged by a voltage corresponding to the photoreceptor signal;

the exposure measurement circuit comprises:

an input connected to the output of the front-end circuit for receiving the photoreceptor signal,

a capacitor connected by a first switch to said input, said first switch being configured for disconnecting said capacitor from said input,

a source current in series with a second switch, parallel to said capacitor, said second switch being configured for controlling a discharge of said capacitor, and

the exposure measurement cycle comprises at least the following steps:

opening a first switch for disconnecting the measurement capacitor from the input of the measurement exposure circuit,

closing the second switch for allowing the discharge of the capacitor,

determining the time for the discharging capacitor of the exposure to reach at least one reference voltage, determining the light exposure of the photodiode from the determined discharging time of the capacitor.

FIG. 1 shows a block diagram of a pixel circuit according to a possible embodiment of the invention,

FIGS. 2 and 3 show simplified diagrams of exemplary embodiments of transient detector circuits for detecting changes in the photoreceptor signal,

FIGS. 4 and 5 show simplified diagrams of exemplary embodiments of the exposure measurement circuit for measuring the photoreceptor signal,

FIGS. 6 and 7 show simplified diagrams of exemplary embodiments of photoreceptor circuits;

FIG. 8 shows a simplified diagram of a gain stage for amplifying changes in the photoreceptor signal prior to its exploitation by the transient detector circuit and by the exposure measurement circuit;

FIG. 9 shows an image sensor comprising a plurality of pixel circuits according to the invention.

FIG. 10 shows an alternative block diagram of a pixel circuit according to a possible embodiment of the invention, connected to a pixel-external analog-to-digital converter.

In all figures, the same reference characters refer to the same elements.

DETAILED DESCRIPTION OF THE INVENTION

A simplified diagram of a pixel circuit according to a possible embodiment is shown in FIG. 1. The pixel circuit comprises a front-end circuit 1, a transient detector circuit 2, and an exposure measurement circuit 3. The front-end circuit 1 comprises a single photodiode PD and has an output 4. The photodiode PD converts incident light into a photocurrent I_{ph} determined by the light exposure of said single photodiode PD. The front-end circuit 1 also comprises a photoreceptor circuit 5 and a gain stage 6 for generating a photoreceptor signal derived from the light exposure of said single photodiode PD. The photoreceptor signal is delivered at the output 4 of the front-end circuit 1 in order to be exploited by both the transient detector circuit 2 and the exposure measurement circuit 3.

The transient detector circuit 2 is configured for detecting a change in the photoreceptor signal delivered on the front-end circuit output 4. The transient detector circuit 2 continuously monitors the photoreceptor signal for changes and responds with a signal that identifies a fractional increase or decrease in the photoreceptor signal that exceeds adjustable thresholds.

The exposure measurement circuit 3 is configured for measuring the photoreceptor signal delivered on the output 4 of the front-end circuit 1. The exposure measurement cycle is initiated if the transient detector 2 circuit has detected a change in the photoreceptor signal, but it can also be initiated through an externally applied control signal independent from any change detection.

Transient Detector Circuit

U.S. Pat. No. 7,728,269 discloses a transient detector circuit that can be used in some embodiments of the invention. Principles of such a transient detector circuit are explained below.

A simplified diagram of the transient detector circuit 2 for detecting changes in the photoreceptor signal is shown on FIG. 2. The input signal V_{front} at the input 20 of the transient detector circuit 2 is the photoreceptor signal V_{front} at output 4 of the front-end circuit 1. The transient detector circuit 2 comprises a first capacitor C_{1}. One of the terminals of said first capacitor C_{1} is connected to the input 20 of the transient detector circuit 2, i.e. it is connected to the output 4 of the front-end circuit 1. The other terminal of the first capacitor C_{1}
is connected to an amplifier A1, a second capacitor C2 and a reset switch S_{RST1} said amplifier A1, second capacitor C2 and reset switch S_{RST1} being arranged in parallel, and connected on one end to the first capacitor C1 and on the other end to a common node Diff. Capacitances and gain are chosen so as to define a self-timed, self-balancing switched-capacitor amplifier. Two voltage comparators 7, 8, respectively detect upward and downward changes of the voltage V_{ref} at the common node Diff. The voltage comparators 7, 8, have the common node Diff at their inputs, and their outputs are connected to a logic circuit 9.

Changes of the photoreceptor signal are amplified by the capacitively coupled inverting amplifier A1 and appear as a deviation from a defined voltage level (operating point after a reset event) at the node Diff. If the signal at the common node Diff crosses certain adjustable threshold levels, this event is detected by one of two voltage comparators 7, 8, which sends a signal to a logic circuit 9, and a request signal (Vreq,rel+ or Vreq,rel−, depending on the direction of the detected change) is activated by the logic circuit 9.

Upon receiving the request signal, Vreq,rel+ or Vreq,rel−, and retrieving associated pixel data (see below), an external data receiver (not shown) sends back an acknowledge signal Vack,rel+ that is turned into a reset signal RST by the logic block 9. The reset signal RST controls the reset switch S_{RST1} and such an activation closes the reset switch S_{RST1}. Accordingly, the input node of the amplifier A1 is short-circuited to its output and the operating point of the amplifier A1 is reset. Subsequently the request signal is deactivated and the circuit is ready for detecting a new change event.

The request signal Vreq,rel+ or Vreq,rel− is also used to generate the control signal Vreq,abs sent to the exposure measurement circuit 3 to initiate an absolute exposure measurement, making this measurement conditional to the prior detection of a change in pixel illuminance, signaled by the transient circuit detector 2. Alternatively, the entire (1 or 2-dimensional) pixel array can be initiated to execute an exposure measurement simultaneously in all pixels by an externally applied control signal.

The request signals Vreq,rel+ and Vreq,rel− are sent to a bus arbiter (not shown) which initiates and controls the transmission of data packets. In this way changes in photodiode illumination are detected and as a result, the array address of the respective pixel is transmitted with low latency over an asynchronous data bus (not shown), thereby signaling the coordinates in space and (inherently) in time of the detected change. The direction of change (increase or decrease) for each event is determined by which one of the two comparators detects the event.

FIG. 3 illustrates an improvement of the transient detector circuit 2, wherein a two-stage amplifier is used instead of the single capacitively coupled inverting amplifier whereby greatest temporal contrast sensitivity can be achieved. Such a structure is disclosed in the article of C. Poschi, D. Matolin and R. Wolfgang, “A Two-Stage Capacitive-Feedback Differences Amplifier for Temporal Contrast IR Sensors”, Analog Integrated Circuits and Signal Processing Journal, vol. 64, no. 1, pp. 45-54, 2010.

The two-stage topology of single-ended inverting common-source stages with capacitive feedback, operating in the sub-threshold region and separated by a follower buffer A_{SG}, allows a significant increase in amplifier gain per unit area and leads to reduced charge injection noise (as explained below), consequently improving the temporal contrast sensitivity of the transient detector circuit.

The first stage has a first capacitor C1, connected by one of its terminal to the input 20 of the transient detector circuit 2, and the other terminal connected to a first amplifier A1. A second capacitor C2 and a first reset switch S_{RST1} said first amplifier A1, second capacitor C2 and first reset switch S_{RST1} being arranged in parallel, and connected on one end to the first capacitor C1 and on the other end to a common node Diff. The second capacitor C2 is thus being charged by means of the photoreceptor signal at the output 4 of the front-end circuit 1.

The follower buffer A_{SG} separates the two stages. It is connected on one end to the first node Diff of the first stage and on the other end to a terminal of a third capacitor C3 that belongs to the second stage. The other terminal of the third capacitor C3 is connected to a second amplifier A2, a fourth capacitor C4 and a second reset switch S_{RST2} said second amplifier A2, fourth capacitor C4 and second reset switch S_{RST2} being arranged in parallel, and connected on one end to the third capacitor C3 and on the other end to a second node Diff. The two voltage comparators 7, 8, are connected to the second stage through the second node Diff. The two voltage comparators 7, 8, are threshold detectors arranged to detect if a voltage over the fourth capacitor C4 exceeds threshold values, and if it does, a signal is sent to the control logic 9, and a request signal (Vreq,rel+ or Vreq,rel−, depending on the direction of the detected change) is activated by the logic circuit 9 as described above.

With both amplifier stages having similar gain, the charge injection in the first stage through the first reset switch S_{RST1} has a greater impact on the amplified signal at second node Diff than a charge injection in the second stage through the second reset switch S_{RST2}. To eliminate the effect of the charge injection of the first reset switch S_{RST1}, it is sufficient guarantee that the second stage is turned on sufficiently after the first stage. This is achieved by appropriately delaying the switching of the second reset switch S_{RST2} with respect to the first reset switch S_{RST1}.

A reset control circuit RCC is thus provided, which receives the reset signal RST from the logic circuit 9 and outputs a first reset signal RST1 controlling the first reset switch S_{RST1} and a second reset signal RST2 controlling the second reset switch S_{RST2}. The first and second reset signals can thus be controlled in order to eliminate the charge injection due to the first reset switch S_{RST1}.

Exposure Measurement

A light exposure measurement cycle of a photodiode by means of the exposure measurement circuit 3 is usually initiated by detection, by the transient detector circuit 2, of a change in the photoreceptor signal derived from the intensity of the incident light at the photodiode PD. The light exposure of the photodiode PD is measured by determining the time for a voltage across a discharging capacitor C3 of the exposure measurement circuit 3 to reach at least a reference voltage. Before the exposure measurement cycle, the measurement capacitor Cs of the exposure measurement circuit 3 is charged by a voltage corresponding to the photoreceptor signal.

Exposure Measurement Circuit—1st Embodiment

FIG. 4 shows a simplified diagram of an example of the exposure measurement circuit 3 for measuring the photoreceptor signal according to a possible embodiment of the invention. The exposure measurement circuit 3 comprises an input 30 connected to the output 4 of the front-end circuit 1 for receiving the photoreceptor signal. A measurement capacitor C3 is connected by a first switch S3 to the input 30. A unity-gain buffer 13 may be provided at the input 30. The first switch S3 is configured for connecting or disconnecting the measurement capacitor C3 from the input 30, and is controlled to this end by a measurement control signal V_{EMP}.
The measurement control signal V_{EM} is derived by logic block 12 from the control signal $V_{req, abs}$ sent by the control logic 9 of the transient detector circuit 2 upon detection of a change in the photoreceptor signal.

The measurement capacitor C_2 and the first switch S_1 are connected through a common node S. The other terminal of the measurement capacitor C_2 is grounded. In parallel to the measurement capacitor C_2, a current source 10 is arranged in series with a second switch S_2. The second switch S_2 is also controlled by the measurement control signal V_{EM} and is configured for controlling a discharge of the measurement capacitor C_2. When the second switch S_2 is not passing (open state), the branch of the current source 10 is open, and thus the measurement capacitor C_2 cannot discharge. When the second switch S_2 is passing (closed state), the branch of the current source 10 is closed, and thus the measurement capacitor C_2 can discharge through this branch. The second switch S_2 is connected to ground, or it may be connected to any current sink. The first and second switches may be implemented as MOS transistors. It shall be noted that for illustration purposes, the first switch S_1 and the second switch S_2 are both depicted in open states at the same time, but in operation only one of them is open while the other is closed. The same applies for the switches of Fig. 5.

The exposure measurement circuit 3 comprises a voltage comparator 11, having a signal input connected to one of the terminals of the measurement capacitor C_2 and a reference input connected a reference voltage V_{ref}. The terminal of the measurement capacitor C_2 connected to the measurement comparator 11 is the common node S to which are connected the first switch S_1 and the second source 10. The output of the voltage comparator 11 is fed to a logic circuit 12. The logic circuit 12 is responsible for controlling the status of the exposure measurement cycle and for the (asynchronous) transmission of the pixel signals, and hence of the result of the exposure measurement, to an address encoder and bus arbiter (not shown).

For exposure measurement, the instantaneous voltage V_s at the common node S, to which the measurement capacitor C_2 and the current source 10 are connected, is used. The instantaneous voltage V_s can be approximated as:

$$V_s = k_1 \log(I_{ph}) + k_2$$

wherein I_{ph} is the intensity of the photocurrent of the photodiode PD at the front-end circuit 1, k_1 and k_2 are constant factors. The instantaneous value of the voltage V_s relates logarithmically to the instantaneous photocurrent I_{ph}; consequently a measurement of the voltage V_s allows to reconstruct instantaneous photocurrent I_{ph} and thus to derive the light exposure level of the photodiode PD.

Constants k_1 and k_2 depend on details of the circuit implementation as well as on individual device parameters which can vary due to non-uniform fabrication process parameters. Consequently, k_1 and k_2 may not be identical for individual pixel circuits across an array (leading to so-called fixed pattern noise, FPN). Preferably, k_1 and k_2 are determined for each pixel individually, and their influence on the exposure measurement results are removed by calibration. Such a calibration can for example be based on a homogeneous optical stimulation of the pixel array, or on uniform electrical signal stimulation.

Before the initiation of an exposure measurement cycle, the first switch S_1 is closed, so that the common node S is connected to the input 30 of the exposure measurement circuit 3. The voltage V_s at the common node S thus follows the voltage V_{front} at the output 4 of the front-end circuit 1. The voltage between the terminals of the measurement capacitor C_2 also follows the voltage V_{front} at the output 4 of the front-end circuit 1, and consequently depends on the light exposure of the photodiode PD.

After the transient detector circuit 2 has detected a relative change in illumination, a measurement control signal $V_{req, abs}$ is received by the exposure measurement circuit 3, which initiates an exposure measurement cycle.

Upon activation of the control signal $V_{req, abs}$, the first switch S_1 is opened by the measurement control signal V_{EM} thus disconnecting the measurement capacitor C_2 from the input 30 of the exposure measurement circuit 3. At that moment, the measurement capacitor C_2 is discharged according to the instantaneous value of the common node voltage V_s before opening the first switch S_1. The second switch S_2 can be simultaneously closed by means of the same measurement control signal V_{EM} or shortly after by means of another signal that controls the second switch S_2.

A reference voltage V_{ref} is applied to a reference input of the voltage comparator 11 with reference voltage V_{ref} being chosen so that in every case the relation $V_{ref} < V_s$ is assured. The signal input of the voltage comparator 11 is connected to V_s. Due to the closing of the second switch S_2, the measurement capacitor C_2 is discharged by a constant current I_{dec} controlled by the current source 10. The voltage V_s at the signal input of the measurement comparator 11 thus decreases, with a decreasing rate that depends on the capacitance of the measurement capacitor C_2 and on the intensity of the constant current I_{dec} imposed by the current source 10.

When the voltage V_s at the signal input of the measurement comparator 11 reaches the reference voltage V_{ref} the measurement comparator 11 switches, i.e. it toggles its output, and an end-of-measurement signal $V_{req, abs}$ is activated by logic block 12. The time between the active edges of the control signal $V_{req, abs}$ and the end-of-measurement signal $V_{req, abs}$ encodes the average absolute pixel exposure measure during this time, according to the relation

$$V_s(t_{off}) - V_{ref} = \frac{I_{dec} \cdot T}{C_2}$$

where I_{dec} denotes the intensity of the constant current imposed by the current source 10, C_2 is the capacitance of the measurement capacitor C_2, I_{ph} is the intensity of the photocurrent of the photodiode PD, and T is the time needed for the voltage V_s to reach the reference voltage V_{ref} (or in other words the time between the active edges of the control signal $V_{req, abs}$ and the end-of-measurement signal $V_{req, abs}$).

From this relation, and due to the fact that

$$V_s(t) = k_1 \log(I_{ph}) + k_2 + k_3$$

the intensity I_{ph} of the photocurrent of the photodiode PD and hence the pixel light exposure can be determined. Similarly to the request signals ($V_{req, rel}$+ and $V_{req, rel}$-) derived from the change detection events, the exposure measurement request signals $V_{req, abs}$ are sent to a bus arbiter (not shown) which initiates and controls the transmission of data packets. In this way, the pixel address of the respective pixel is transmitted with low latency over an (asynchronous) data bus (not shown), thereby signaling the coordinates in space and—inherently—in time of the end-of-measurement, thus effectively transmitting the instantaneous pixel grey level value.

Alternatively, control logic 12 can contain a digital counter device that directly digitizes the time between activation of control signal $V_{req, abs}$ and the exposure measurement request signals $V_{req, abs}$. In this case, said transmitted data
packet can contain, in addition to the pixel array address, the measured grey level digitized by the counter.

With the deactivation by control logic 12 of control measurement control signal V_{EM}, the first switch S_1 is closed, and the second switch S_2 is opened, so that voltage V_x at the common node S can resume tracking the photocurrent signal. The deactivation of signal V_{EM} is done by control logic 12 upon reception of an external acknowledge signal V_{ack}. A new exposure measurement cycle can be started as soon as initiated by the transient detector circuit 2 or by an external signal.

It shall be noted that charge injection into capacitor C_x occurs while opening the first switch S_1, which influences the signal voltage V_x. In order to minimize this charge injection, the measurement capacitor should have a high enough capacitance C_x and techniques for compensation such as dummy switches and balanced transistor switches or bottom-plate transistor switches can be used.

Exposure Measurement Circuit—2nd Embodiment

FIG. 5 shows a simplified diagram of an example of the exposure measurement circuit 3 for measuring the photoreceptor signal according to another possible embodiment of the invention. This embodiment is similar to the embodiment depicted in FIG. 4 and described above, except in that the reference input of the measurement comparator 11 is connected to the reference switch S_ref instead of being directly connected to a reference voltage V_{ref}. The reference switch S_ref is operable to connect the reference input of the measurement comparator 11 either to a first reference voltage V_{ref,1} or a second reference voltage V_{ref,2}. The first reference voltage V_{ref,1} is higher than the second reference voltage V_{ref,2}. The reference switch S_ref is controlled by the logic block 12.

As in the embodiment depicted in FIG. 3, activation of the measurement control signal V_{EM} by logic block 12 upon reception of control signal V_{ack}, opens the first switch S_1, thus disconnecting the measurement capacitor C_x from the exposure measurement input 30. Activation of the control signal V_{ack} also resets the logic block 12 to an initial state Z_0 and, via the logic block 12, controls the reference switch S_ref so that the first reference voltage V_{ref,1} is selected to be applied to the reference input of the voltage comparator 11.

As previously described, the second switch S_2 is closed and the voltage V_x at the signal input of the measurement comparator 11 decreases, with a decrease rate that depends on the capacitance of the measurement capacitor C_x and on the intensity of the constant current I_{dec} imposed by the current source 10. When the voltage V_x reaches the first reference voltage V_{ref,1}, the measurement comparator 11 switches, i.e., it toggles its output, and the first end-of-measurement signal V_{req,1} is activated. The logic block 12 changes to another state Z_1, and the reference switch S_ref is switched so that the second reference voltage V_{ref,2} is selected to be applied to the reference input of the voltage comparator 11. The discharge of the measurement capacitor C_x continues, and after time T_{ref,2} the voltage V_x reaches the level of the second reference voltage V_{ref,2}, whereby the second end-of-measurement signal V_{req,2} is activated. With the activation of the second end-of-measurement signal V_{req,2}, the logic circuit 12 is changed to an idle state Z_2, the first switch S_1 is closed, and the second switch S_2 is opened, so that voltage V_x can resume tracking the photocurrent signal. A new exposure measurement cycle can then be started as soon as initiated by the transient detector circuit 2 or by an external signal.

The light exposure of the photodiode PD is measured by determining and comparing durations corresponding to the time for the voltage across the discharging capacitor C_x to reach the first and second reference voltages. During a measurement cycle, a relation between the different values is:

$$\frac{I_{dec}}{C_x} = \frac{V_{ref,1} - V_{ref,2}}{T_{ref}}$$

The first reference voltage V_{ref,1} and the second reference voltage V_{ref,2} are external voltages provided to each pixel of the array. Accordingly, the voltage difference V_{req,1} - V_{req,2} is the same for every pixel of an array. As previously, with T the duration for the decreasing voltage V_x, to reach the first reference voltage V_{ref,1}, the following relation holds:

$$V_x(T_{ref,1}) - V_{ref,1} = \frac{I_{dec}}{C_x} \cdot T_{ref}$$

Accordingly,

$$V_x(T_{ref,2}) - V_{ref,2} = \frac{V_{ref,1} - V_{ref,2}}{T_{ref}} \cdot T$$

It shall be noted that the exact values of the current I_{dec} imposed by the current source 10 and the capacitance C_x of the measurement capacitor are canceled out, and do not influence the determination of the intensity of the photocurrent I_{ph} that can be deduced. Since the intensity I_{dec} and the capacitance C_x may differ from a pixel to another, and are prone to be affected by fabrication process parameter variation, a determination of intensity of the photocurrent I_{ph} independent from such values is more reliable.

Similar to the first embodiment of the exposure measurement circuit, both signals Vreq,1sh and Vreq,2sh are sent to a bus arbiter (not shown) which initiates and controls the transmission of data packets. In this way, the address of the respective pixel is transmitted with low latency over an asynchronous data bus (not shown), thereby signaling the coordinates in space and (inherently) in time of the first and second threshold voltage crossings (signifying beginning and end of an exposure measurement, respectively), thus effectively transmitting the instantaneous pixel grey level value.

Again similar to the first embodiment of the exposure measurement circuit, control logic 12 can contain a digital counter device that directly digitizes the time between (activation of) signals Vreq,1sh and Vreq,2sh. In this case, only Vreq,2sh is sent to the bus arbiter (not shown) which initiates and controls the transmission of data packets, along with the result of said digitization. Hence, the transmitted data packet can contain, in addition to the pixel array address, the measured grey level digitized by the counter.

Alternative Exposure Measurement Circuit

In an alternative embodiment illustrated by FIG. 10, the exposure measurement circuit 3 is constituted by a sample-and-hold circuit 100 that samples the output 4 of the front-end circuit 1 at the time of activation by the transient detector circuit 2 of control signal V_{ack}. The output 101 of the sample-and-hold circuit 100 is connected to a pixel-external voltage analog-to-digital converter (ADC) 102. One
ADC 102 per pixel array or one ADC 102 per pixel column can be arranged. The output 103 of the ADC 102 is connected to a data bus (not shown).

Similar to the previous embodiments, activation of the sample-and-hold circuit 100 is controlled by control signal \(V_{\text{st.hold}} \) from transient detector circuit 2. After completed sample operation of the instantaneous voltage level at the output 4 of the front-end circuit upon reception of active control signal \(V_{\text{st.hold}} \), the sampled voltage is sent to the ADC via output 101 for analog-to-digital conversion. After completed analog-to-digital conversion, the result of the conversion along with the pixel array address is transmitted to a bus arbiter (not shown) which initiates and controls the transmission of data packets. In this way, the array address of the respective pixel and its instantaneous grey level are transmitted with low latency over an (asynchronous) data bus (not shown).

Photoreceptor Circuit—Prior Art Embodiment

The photoreceptor circuit 5 of the front-end circuit 1 can for example be the one described in U.S. Pat. No. 7,728,269, which is depicted in FIG. 6. This circuit comprises an output 50 for delivering the photoreceptor signal derived from the light exposure of the single photodiode PD, said photoreceptor signal being constituted by a front voltage \(V_{\text{frnt}} \). It also comprises a first photoreceptor transistor Mp1 having a drain and a gate, the gate of said first photoreceptor transistor Mp1 being connected to said output 50. A second photoreceptor transistor Mp2 has its gate connected to the photodiode PD and its source is grounded (i.e. connected to a low supply voltage) while its drain is connected to the source of a third photoreceptor transistor Mp3, whose gate is biased by a biasing voltage \(V_{\text{bias,cs}} \). The drain of the third photoreceptor transistor Mp3 is connected to the output 50, thus also to the gate of the first photoreceptor transistor Mp1. The drain of the third photoreceptor transistor Mp3 is also connected to the drain of a fourth photoreceptor transistor Mp4, whose gate is biased by a biasing voltage \(V_{\text{bias,pr}} \) and whose source is connected to a high supply voltage \(V_{dd} \). The first photoreceptor transistor Mp1, the second photoreceptor transistor Mp2 and the third photoreceptor transistor Mp3 are N-type MOSFETs, while the fourth photoreceptor transistorMp4 is a P-type MOSFET.

The output voltage \(V_{\text{frnt}} \) shows a logarithmic relation to the photocurrent \(I_{ph} \):

\[
V_{\text{frnt}} = R_{\text{mp1}} \cdot V_t \cdot \log\left(\frac{I_{mp1}}{I_{thmp1}} \right) - V_D
\]

where

- \(\beta_{mp1} \) is the sub-threshold slope factor of the first photoreceptor transistor Mp1,
- \(V_t \) is the thermal voltage,
- \(I_{mp1} \) is the channel length of the first photoreceptor transistor Mp1,
- \(W_{mp1} \) is the channel width of the first photoreceptor transistor Mp1,
- \(\beta_{mp1} \) is the sub-threshold saturation current of the first photoreceptor transistorMp1, and
- \(V_D \) is the reverse voltage across the photodiode PD.

A change in the photocurrent \(I_{ph} \) from a first value \(I_{ph1} \) to a second value \(I_{ph2} \) causes a change \(\Delta V_{\text{frnt}} \) of the output voltage \(V_{\text{frnt}} \), according to:

\[
\Delta V_{\text{frnt}} = R_{\text{mp1}} \cdot V_t \cdot \log\left(\frac{I_{ph2}}{I_{ph1}} \right)
\]

Due to the feedback of the output 50 to the input of the amplifier constituted by transistors Mp2, Mp3 and Mp4, the bandwidth of the photoreceptor element is significantly increased compared to non-feedback logarithmic photoreceptor circuits. The 3-dB frequency, which corresponds to the half power point, is approximately calculated as

\[
f_{\text{3dB}} = \frac{1}{2\pi} \cdot \frac{1}{C_P + \frac{I_{mp1}}{V_t}} \cdot \frac{1}{V_t} \cdot \frac{1}{2\pi} \cdot \frac{1}{C_{mp1,cs}} \cdot \frac{1}{V_t}
\]

with

- \(C_{mp1,cs} \) is the capacitance between the source of the first photoreceptor transistor Mp1 and the output of the amplifier constituted by the second, third and fourth photoreceptor transistorsMp2, Mp3 and Mp4, which is also the output 50 of the photoreceptor circuit 5,
- \(C_P \) is the junction capacitance of the photodiode PD,
- \(V_t \) is the thermal voltage, and
- \(v \) is the small signal gain of the amplifier constituted by the second, third and fourth photoreceptor transistorsMp2, Mp3 and Mp4.

It shall be noted that the capacitance \(C_{mp1,cs} \) depends mainly on the gate-source overlap capacitance of the first photoreceptor transistor Mp1, which is proportional to its channel width. For usual large values of the small signal gain \(v \), the 3 dB frequency of the circuit, in comparison to a configuration without feedback, is no longer dominated by the capacitance of the photodiode PD, but by the much smaller gate-source overlap capacitance of the first photoreceptor transistor Mp1.

Improved Photoreceptor Circuit

FIG. 7 shows another circuit exhibiting significant improvements with respect to the gain and the bandwidth. The improved circuit is also a logarithmic, continuous-time photoreceptor circuit with feedback for improving the bandwidth, but compared to the photoreceptor circuit of FIG. 6, an additional fifth photoreceptor transistor Mp5 is arranged between the photodiode PD and the first photoreceptor transistor Mp1.

Accordingly, the improved photoreceptor circuit 5 of FIG. 7, comprises an output 50 for delivering the photoreceptor signal derived from the light exposure of said single photodiode, said photoreceptor signal being constituted by a voltage \(V_{\text{frnt}} \). It comprises a first photoreceptor transistor Mp1 having a drain and a gate, the gate of said first photoreceptor transistor Mp1 being connected to said output 50. It also comprises a fifth photoreceptor transistorMp5 having a drain, a source and a gate, the source of said fifth photoreceptor transistor Mp5 being connected to the single photodiode PD and the gate of fifth photoreceptor transistor Mp5 being biased by a biasing voltage \(V_{\text{bias,d}} \). The first photoreceptor transistor Mp1 and the fifth photoreceptor transistorMp5 have a common source.

The other photoreceptor transistors are arranged in a way similar to the circuit of FIG. 6, constituting an amplifier. A second photoreceptor transistor Mp2 has its gate connected to the photodiode PD and to the drain of the fifth photoreceptor transistor Mp5. Its source is grounded (i.e. connected to a low supply voltage) while its drain is connected to the source of a third photoreceptor transistor Mp3, whose gate is biased by a biasing voltage \(V_{\text{bias,cs}} \). The drain of the third photoreceptor transistor Mp3 is connected to the output 50, thus also to the gate of the first photoreceptor transistor Mp1. The drain of the third photoreceptor transistorMp3 is
also connected to the drain of a fourth photoreceptor transistor \(M_{p4} \), whose gate is biased by a biasing voltage \(V_{bias} \), and whose source is connected to a high supply voltage \(V_{dd} \). The first photoreceptor transistor \(M_{p1} \), the second photoreceptor transistor \(M_{p2} \), and the third photoreceptor transistor \(M_{p3} \) are N-type MOSFETs, while the fifth photoreceptor transistor \(M_{p5} \) and the fourth photoreceptor transistor \(M_{p4} \) are P-type MOSFETs.

Regarding the gain increase, the output voltage \(V_{front} \) of the circuit of FIG. 6 still depends logarithmically on the photocurrent intensity \(I_{ph} \):

\[
V_{front} \propto n_{M_{p5}} \cdot V_{i} \cdot \ln \left(\frac{I_{M_{p5}}}{I_{th_{M_{p5}}}} \right) + n_{M_{p5}} \cdot V_{i} \cdot \ln \left(\frac{I_{M_{ph}}}{I_{th_{M_{ph}}}} \right) + V_{bias}
\]

with

- \(n_{M_{p5}} \) being the sub-threshold slope factor of the fifth photoreceptor transistor \(M_{p5} \),
- \(I_{M_{p5}} \) is the channel length of the first photoreceptor transistor \(M_{p5} \),
- \(W_{M_{p5}} \) is the channel width of the first photoreceptor transistor \(M_{p5} \),
- \(I_{th_{M_{p5}}} \) is the sub-threshold saturation current of the first photoreceptor transistor \(M_{p5} \), and
- \(V_{bias} \) is the biasing voltage applied to the gate of the fifth photoreceptor transistor \(M_{p5} \).

A change in the photocurrent \(I_{ph} \) from a first value \(I_{ph1} \) to a second value \(I_{ph2} \) causes a change \(\Delta V_{front} \) of the output voltage \(V_{front} \), according to:

\[
\Delta V_{front} \propto n_{M_{p1}} \cdot V_{i} \cdot \ln \left(\frac{I_{M_{ph}}}{I_{th_{M_{ph}}}} \right)
\]

Assuming that \(n_{M_{p1}} \approx n_{M_{p5}} \), it can be simplified to:

\[
\Delta V_{front} \approx 2 \cdot n_{M_{p1}} \cdot V_{i} \cdot \ln \left(\frac{I_{M_{ph}}}{I_{th_{M_{ph}}}} \right)
\]

Accordingly, the gain is doubled with respect to the photoreceptor circuit of FIG. 6.

The increased gain achieved by the photoreceptor circuit of FIG. 7 allows for smaller current intensity changes \(\Delta I_{ph} \) of the photocurrent \(I_{ph} \) to be detected since in response to a certain change \(\Delta I_{ph} \) in the intensity of the photocurrent \(I_{ph} \), the resulting voltage change is increased by a doubled gain. Further, since the resulting voltage change is increased before the input of a following amplifier, such as the switched-capacitor differencing amplifier of the transient detector circuit 3, the gain of such a following amplifier can be smaller while achieving the same overall temporal contrast (i.e., relative change) sensitivity, leading to a significant reduction of the CMOS device size, especially the capacitor size of a switched-capacitor amplifier.

Regarding the bandwidth, the 3-dB frequency, which corresponds to the half power point, is approximately calculated as

\[
f_{3dB} = \frac{1}{2\pi C_{M_{p5},DS}} \cdot \frac{I_{ph}}{V_{i}}
\]

where \(C_{M_{p5},DS} \) is the drain-source coupling capacitance of the fifth transistor \(M_{p5} \). In general, this capacitance is significantly smaller than the gate-source overlap capacitance \(C_{M_{p1}} \) of the first photoreceptor transistor \(M_{p1} \) that used to determine the 3-dB frequency in the circuit of FIG. 6. The bandwidth is therefore increased by the ratio \(C_{M_{p5},DS}/C_{M_{p1}} \).

Due to the increased bandwidth of the photoreceptor circuit 5, the response delay of the transient detector circuit 2 is significantly reduced, and the temporal resolution of the pixel circuit and thus of the sensor device is improved. Alternatively, the gate of the fifth photoreceptor transistor \(M_{p5} \) can be connected to its source instead of being driven by a biasing voltage \(V_{bias, d} \). In this configuration however, while the voltage gain is still doubled, there is no increase of the bandwidth.

Gain Stage

FIG. 8 shows a simplified diagram of an example of a pre-amplifier gain stage 6 for amplifying the signal \(V_{front} \) at the output of the photoreceptor circuit 5, instead of a conventional follower buffer.

The pre-amplifier gain stage 6 comprises an input connected to the output of the photoreceptor circuit 5 for receiving the photoreceptor signal \(V_{front} \), and an output connected both to the input of the transient detector circuit 2 and to the input of the exposure measurement circuit 3, for delivering the amplified photoreceptor signal \(V_{amp} \). The pre-amplifier gain stage 6 comprises a first gain transistor \(M_{g1} \) having a drain, a source and a gate. The gate of the first gain transistor \(M_{g1} \) is connected to the input of the gain stage, i.e., to the output of the photoreceptor circuit 5. The source of the first gain transistor \(M_{g1} \) is connected to a reference biasing voltage \(V_{bias, ref} \) and the drain of said first gain transistor \(M_{g1} \) is connected to the output of the gain stage. The first gain transistor \(M_{g1} \) is an N-channel type MOS transistor.

The pre-amplifier gain stage 6 also comprises a plurality of gain transistors \(M_{g2} \). \(M_{gk} \) in series, each one of those gain transistors \(M_{g2} \), \(M_{gk} \) having a drain, a source and a gate, and each one of these gain transistors \(M_{g2} \), \(M_{gk} \) in series having its drain connected to its gate (diode-connected transistors). One of these gain transistors in series has its drain connected to the drain of the first gain transistor \(M_{g1} \) and is referred to as \(M_{g2} \). Accordingly, this gain transistor \(M_{g2} \) has its gate connected to the output of the gain stage 6.

The gain transistors in series are P-channel type MOS transistors.

The described gain stage 6 is a common-source amplifier, the first gain transistor \(M_{g1} \) being an N-MOS input transistor and the series of diode-connected P-MOS gain transistors \(M_{g2} \), \(M_{gk} \) being a load. Such a structure with diode-connected load has a gain which is not strongly dependent on dimensions, so that dimension-related mismatch influence is reduced, which improves fixed-pattern noise (FPN) performance of the pixel array.

There are at least two diode-connected gain transistors in series \(M_{g2} \), \(M_{gk} \), i.e. \(k \geq 3 \). Preferably, more diode-connected gain transistors are arranged in series. In preferred embodiments, three or four diode-connected gain transistors are connected in series. The maximum number of such diode-connected gain transistors are arranged in series is determined by the input voltage swing, i.e., the expected upper level of the input voltage \(V_{front} \) such that the gate-source voltage across the series of diode-connected transistors \(M_{g2} \) to \(M_{gk} \) is not limited by the resulting output voltage \(V_{amp} \).

If the gain stage circuit 6 is operated in the sub-threshold region, and assuming equal dimensions for the diode-con-
nected gain transistors in series Mg_2 to Mg_k, the output voltage V_{amp} is calculated as follows:

$$V_{amp} = V_{DD} - (k - 1) \cdot n_{Mg_2} \cdot \left(\frac{n_{Mg_2}}{W_{Mg_2}} \cdot \frac{L_{Mg_2}}{W_{Mg_2}} \cdot \frac{I_{Mg_2}}{L_{Mg_2}} \right) - (k - 1) \cdot n_{Mg_1} \cdot \left(V_{front} - V_{bias,ref} \right)$$

Where V_{DD} is the high supply voltage, n_{Mg_1} and n_{Mg_2} are the sub-threshold slope factors of the gain transistors Mg_1 and Mg_2 respectively, V_r is the thermal voltage, L_{Mg_1} and L_{Mg_2} are the channel lengths of the first gain transistor Mg_1 and of the second gain transistors Mg_2, respectively, W_{Mg_1} and W_{Mg_2} are the channel widths of the first gain transistor Mg_1 and of the second gain transistors Mg_2, respectively, I_{o,Mg_1} and I_{o,Mg_2} are the sub-threshold saturation currents of the first gain transistor Mg_1 and of the second gain transistors Mg_2, respectively.

An input voltage change ΔV_{front} results in an output voltage change ΔV_{amp} of:

$$\Delta V_{amp} = -(k - 1) \cdot n_{Mg_2} \cdot \Delta V_{front}$$

The gain thus provided by the gain stage 6 allows for smaller current intensity changes ΔI_{ph} of the photocurrent I_{ph} to be detected since in response to a certain change ΔI_{ph} in the intensity of the photocurrent I_{ph}, the resulting voltage change is increased by a $(k-1)$-fold gain. Further, since the resulting voltage change is increased before the input of a following amplifier, such as the switched-capacitor differencing amplifier of the transient detector circuit 3, the gain of such a following amplifier can be smaller while achieving the same overall contrast sensitivity, leading to a significant reduction of the CMOS device size, especially the capacitor size of a switched-capacitor amplifier.

Using a gain stage 6 according to FIG. 8, connected to the output 50 of a photoreceptor circuit 5 such as depicted in FIG. 6 or 7, a photocurrent-dependent bandwidth limitation can be achieved. The gain stage then produces an automatic, photocurrent-controlled noise reduction by self-adjusting its bandwidth. The 3 dB frequency, which corresponds to the half power point, is proportional to the current I_{Mg_1} flowing through the first gain transistor Mg_1:

$$f_{3dB} = \frac{w_{Mg_1} \cdot l_{Mg_1} \cdot e^{-V_{front} \cdot \frac{1}{V_{bias,ref}}}}{n_{Mg_1} \cdot l_{Mg_1} \cdot e^{-V_{bias,ref} \cdot \frac{1}{V_{bias,ref}}}}$$

With equally sized transistors for the first photoreceptor transistor Mg_1 of the photoreceptor circuit 5 as in FIGS. 6 and 7 and for the first gain transistor Mg_1 of the gain stage 6, and with a biasing reference voltage $V_{bias,ref}$ equal to the reverse voltage V_D across the photodiode PD, it follows that the 3 dB frequency is proportional to the photocurrent I_{ph}:

$$f_{3dB} \propto I_{ph}$$

Since the reverse voltage V_D across the photodiode PD is approximately independent of the photocurrent I_{ph}, the biasing reference voltage $V_{bias,ref}$ can be derived globally for all pixels in an array using a dummy circuit with a covered photodiode in a photoreceptor circuit such as the one of FIG. 6 or 7, with the output voltage of such a photoreceptor circuit used as the biasing reference voltage $V_{bias,ref}$.

The gain stage circuit 6 can thus replace a conventional source follower for effectively decoupling the sensitive front-end circuit 1 from the subsequent circuits, i.e. the transient detector circuit 2 and the exposure measurement circuit 3, and photocurrent-dependent bandwidth control and additional signal amplification can be achieved.

FIG. 9 shows an image sensor 90 comprising a plurality of pixel circuits 91 according to possible embodiments of the invention as described above. The depicted pixel circuits 91 are arranged in an array.

The invention claimed is:

1. A pixel circuit comprising a front-end circuit comprising a single photodiode and having an output, said front-end circuit being configured for delivering on said output a photoreceptor signal derived from a light exposure of said single photodiode;

2. A transient detector circuit configured for detecting a change in said photoreceptor signal delivered on said output;

3. An exposure measurement circuit configured for measuring said photoreceptor signal delivered on said output, said exposure measurement circuit comprising a photoreceptor circuit connected to the single photodiode, the photoreceptor circuit comprising:

4. An output for delivering the photoreceptor signal derived from the light exposure of said single photodiode, a first photoreceptor transistor having a drain and a gate, the gate of said first photoreceptor transistor being connected to the output of the photoreceptor circuit, an additional photoreceptor transistor having a drain, a source and a gate, the drain of said additional photoreceptor transistor being connected to said single photodiode, and wherein said first photoreceptor transistor and said additional photoreceptor transistor have a common source.

5. The pixel circuit according to claim 1, wherein the exposure measurement circuit further comprises an input connected to the output of the front-end circuit for receiving the photoreceptor signal, a capacitor connected by a first switch to said input, said first switch being configured for disconnecting said capacitor from said input, a source current in series with a second switch, parallel to said capacitor, said second switch being configured for controlling a discharge of said capacitor.

6. The pixel circuit according to claim 2, wherein the exposure measurement circuit comprises a voltage comparator having a signal input connected to one of the terminal of the capacitor and a reference input connected to a reference voltage (Vref).

7. The pixel circuit according to claim 2, wherein the voltage comparator has:
a signal input connected to one of the terminal of the capacitor and
a reference input connected to reference switch configured for selectively connecting said reference input to at least two reference voltages.

5. The pixel circuit according to claim 1, wherein the transient detector circuit comprises:
an amplifier having two single-ended inverting common-source stages with capacitive feedback separated by a follower buffer, wherein a capacitor is charged by means of the photoreceptor signal, and at least one threshold detector is arranged to detect if a voltage over another capacitor \(C_a \) exceeds a threshold value.

6. The pixel circuit according to claim 1, wherein the gate of the additional photoreceptor transistor is biased by a biasing voltage or is connected to the common source of the first photoreceptor transistor and additional photoreceptor transistors.

7. The pixel circuit according to claim 1, wherein the front-end circuit further comprises a gain stage for amplifying the photoreceptor signal delivered on the output of the front-end circuit, said gain stage comprising:
an input connected to the output of a photoreceptor circuit,
an output,
a first gain transistor having a drain, a source and a gate, the gate of the first gain transistor being connected to the input of the gain stage, the source of the first gain transistor being connected to a biasing voltage and the drain of said first gain transistor being connected to the output of said gain stage, and
a plurality of gain transistors in series, each gain transistor of the series having a drain, a source and a gate, each gain transistors of the series having its drain connected to its gate, and one of said plurality of gain transistors in series having its drain connected to the drain of the first gain transistor.

8. An image sensor comprising a plurality of pixel circuits, wherein each pixel circuit of said plurality of pixel circuits comprises:
a front-end circuit comprising a single photodiode and having an output, said front-end circuit being configured for delivering on said output a photoreceptor signal derived from a light exposure of said single photodiode;
a transient detector circuit configured for detecting a change in said photoreceptor signal delivered on said output;
an exposure measurement circuit configured for measuring said photoreceptor signal delivered on said output upon detection by the transient detector circuit of a change in the photoreceptor signal wherein the front-end circuit comprises a photoreceptor circuit connected to the single photodiode, the photoreceptor circuit comprises:
an output for delivering the photoreceptor signal derived from the light exposure of said single photodiode,
a first photoreceptor transistor having a drain and a gate, the gate of said first photoreceptor transistor being connected to the output of the photoreceptor circuit, an additional photoreceptor transistor having a drain, a source and a gate, the source drain of said additional photoreceptor transistor being connected to said single photodiode, and wherein said first photoreceptor transistor and said additional photoreceptor transistor have a common source.

* * * * *